linux cpufreq framework(5)_ARM big Little driver

作者:wowo 发布于:2015-11-10 22:04 分类:电源管理子系统

也许大家会觉得奇怪:为什么Linux kernel把对ARM big·Lttile的支持放到了cpufreq的框架中?

众所周知,ARM的big·Little架构,也称作HMP(具体可参考“Linux CPU core的电源管理(2)_cpu topology”中相关的介绍),通过在一个chip中封装两种不同类型的ARM core的方式,达到性能和功耗的平衡。这两类ARM Core,以cluster为单位,一类为高性能Core(即big core),一类为低性能Core(即Little core),通过它们的组合,可以满足不同应用场景下的性能和功耗要求,例如:非交互式的后台任务、或者流式多媒体的解码,可以使用低功耗的Little core处理;突发性的屏幕刷新,可以使用高性能的big core处理。

那么问题来了,Linux kernel怎么支持这种框架呢?

注1:本文很多理论性的表述,或多或少的理解并翻译自:“http://lwn.net/Articles/481055/”,感兴趣的读者可以自行阅读。

注2:本文基于linux-3.18-rc4内核,其它版本内核可能会稍有不同。

阅读全文>>

标签: Linux ARM cpufreq hmp big little

评论(35) 浏览(20330)

Linux CPU core的电源管理(5)_cpu control及cpu hotplug

作者:wowo 发布于:2015-9-19 21:39 分类:电源管理子系统

由“Linux CPU core的电源管理(1)_概述”的描述可知,kernel cpu control位于“.\kernel\cpu.c”中,是一个承上启下的模块,负责屏蔽arch-dependent的实现细节,向上层软件提供控制CPU core的统一API(主要包括cpu_up/cpu_down等接口的实现)。本文将基于这些API,从上到下,分析CPU core从启动到关闭的整个过程(主要是CPU hotplug),进一步理解系统运行过程中CPU core电源管理相关的行为。

注1:其实这一部分已经不属于电源管理的范畴了,而是系统级的软件行为(boot、调度、电源管理等等),之所以放到这里讲述,主要原因是,这些复杂行为的背后,目的只有一个----节电。因此,本文只会focus在CPU core power状态切换的过程上,涉及到得其它知识,如进程调度,只会一笔带过。

阅读全文>>

标签: Linux cpu hotplug cpu_up cpu_down smpboot

评论(17) 浏览(42650)

linux cpufreq framework(4)_cpufreq governor

作者:wowo 发布于:2015-8-23 21:15 分类:电源管理子系统

由“linux cpufreq framework(3)_cpufreq core”的描述可知,cpufreq policy负责设定cpu调频的一个大致范围,而cpu的具体运行频率,则需要由相应的cufreq governor决定(可自行调节频率的CPU除外,后面会再详细介绍)。那到底什么是cpufreq governor?它的运行机制是什么?这就是本文要描述的内容。

阅读全文>>

标签: Linux governor cpufreq

评论(33) 浏览(21484)

linux cpufreq framework(3)_cpufreq core

作者:wowo 发布于:2015-7-30 20:58 分类:电源管理子系统

前文(Linux cpufreq framework(2)_cpufreq driver)从平台驱动工程师的角度,简单的介绍了编写一个cpufreq driver的大概步骤。但要更深入理解、更灵活的使用,必须理解其内部的实现逻辑。

因此,本文将从cpufreq framework core的角度,对cpufreq framework的内部实现做一个简单的分析。

阅读全文>>

标签: Linux core cpufreq

评论(10) 浏览(23068)

Linux CPU core的电源管理(3)_cpu ops

作者:wowo 发布于:2015-7-17 22:15 分类:电源管理子系统

由“ARMv8-a架构简介”中有关的介绍可知,ARMv8(包括ARMv7的一些扩展)引入了Virtualization、Security等概念。在这些概念之下,传统的CPU boot、shutdown、reset、suspend/resume等操作,不再那么简单和单纯。因此,ARM将这些底层操作抽象为一些operations,在以统一的方式向上层软件提供API的同时,可以根据不同的场景,有不同的实现。这就是本文要描述的cpu ops。

注1:由“Linux CPU core的电源管理(1)_概述”的描述可知,cpu ops属于arch-dependent的部分,本文基于ARM64平台。

阅读全文>>

标签: Linux SMP cpu operations spin_table psci

评论(20) 浏览(33767)

Linux cpufreq framework(2)_cpufreq driver

作者:wowo 发布于:2015-6-19 22:27 分类:电源管理子系统

本文从平台驱动工程师的角度,介绍怎么编写cpufreq驱动。

注1:本文基于linux-3.18-rc4内核,其它版本内核可能会稍有不同。

阅读全文>>

标签: Linux driver cpufreq

评论(5) 浏览(23485)

linux cpufreq framework(1)_概述

作者:wowo 发布于:2015-6-13 22:20 分类:电源管理子系统

linux kernel主要通过三类机制实现SMP系统CPU core的电源管理功能:

1)cpu hotplug。根据应用场景,enable/disable CPU core,具体可参考“Linux CPU core的电源管理(4)_cpu control”。

2) cpuidle framework。在没有进程调度的时候,让CPU core进入idle状态,具体可参考“cpuidle framework系列文章”。

3) cpufreq framework。根据使用场景和系统负荷,调整CPU core的电压(voltage)和频率(frequency),具体可参考本文以及后续cpufreq相关的。

对CPU core来说,功耗和性能是一对不可调和的矛盾,通过调整CPU的电压和频率,可以在功耗和性能之间找一个平衡点。由于调整是在系统运行的过程中,因此cpufreq framework的功能也称作动态电压/频率调整(Dynamic Voltage/Frequency Scaling,DVFS)。

本文主要从功能说明和软件架构两个角度介绍cpufreq framework。

阅读全文>>

标签: Linux cpufreq dvfs hmp

评论(16) 浏览(34766)

Linux电源管理(15)_PM OPP Interface

作者:wowo 发布于:2015-6-4 21:54 分类:电源管理子系统

本文是分析cpufreq framework之前的一篇前置文章,用于介绍Linux电源管理中的Operating Performance Point (OPP)接口。

OPP是一个单纯的软件library,用于归纳、管理各个硬件模块的、可工作的{频率}/ {电压}组合。它不涉及任何硬件,也没有复杂的逻辑,再加上Kernel document(Documentation/power/opp.txt )描述的非常清晰,因此本文只是简单的从功能和API两个方便介绍OPP,不再分析其source code及内部实现逻辑。

阅读全文>>

标签: Linux PM Power opp

评论(12) 浏览(22342)

Linux CPU core的电源管理(2)_cpu topology

作者:wowo 发布于:2015-5-30 21:58 分类:电源管理子系统

在“Linux CPU core的电源管理(1)_概述”中,我们多次提到SMP、CPU core等概念,虽然硬着头皮写下去了,但是蜗蜗对这些概念总有些似懂非懂的感觉。它们和CPU的进化过程息息相关,最终会体现在CPU topology(拓扑结构)上。因此本文将以CPU topology为主线,介绍CPU有关(主要以ARM CPU为例)的知识。

另外,CPU topology除了描述CPU的组成之外,其主要功能,是向kernel调度器提供必要的信息,以便让它合理地分配任务,最终达到性能和功耗之间的平衡。这也是我将“cpu topology”归类为“电源管理子系统”的原因。

阅读全文>>

标签: SMP cpu topology SMT NUMA

评论(22) 浏览(36611)

Linux CPU core的电源管理(1)_概述

作者:wowo 发布于:2015-4-30 21:20 分类:电源管理子系统

在SMP(Symmetric Multi-Processing)流行起来之前的很长一段时间,Linux kernel的电源管理工作主要集中在外部设备上,和CPU core相关的,顶多就是CPU idle。但随着SMP的普及,一个系统中可用的CPU core越来越多,这些core的频率越来越高,处理能力越来越强,功耗也越来越大。因此,CPU core有关的电源管理,在系统设计中就成为必不可少的一环,与此有关的思考包括:

对消费者(一些专业应用除外)而言,这种暴增的处理能力,是一种极大的浪费,他们很少(或者从不)有如此高的性能需求。但商家对此却永远乐此不疲,原因无外乎:

1)硬件成本越来越低。

2)营销的噱头。

3)软件设计者的不思进取(臃肿的Android就是典型的例子),导致软件效率低下,硬件资源浪费严重。以至于优化几行代码的难度,甚至比增加几个cpu核还困难。

在这种背景下,CPU core的电源管理逻辑,就非常直接了:根据系统的负荷,关闭“多余的CPU性能”,在满足用户需求的前提下,尽可能的降低CPU的功耗。但CPU的控制粒度不可能无限小,目前主要从两个角度实现CPU core的电源管理功能:

1)在SMP系统中,动态的关闭或者打开CPU core(本文重点介绍的功能)。

2)CPU运行过程中,动态的调整CPU core的电压和频率(将在其它文章中单独分析)。

本文将以ARM64为例,介绍linux kernel CPU core相关的电源管理设计。

阅读全文>>

标签: Linux PM core cpu

评论(22) 浏览(42402)

Copyright @ 2013-2015 蜗窝科技 All rights reserved. Powered by emlog