Linux电源管理(13)_Driver的电源管理
作者:Physh 发布于:2014-12-26 18:31 分类:电源管理子系统
首先,回想一下wowo电源管理系列文章中提到的几个PM特性:
B. Wake Lock
C. Auto Sleep
这篇文章就简单简单整理一下以上特性的在Driver中的使用场景,理解可能有偏差,大家多指教。
Linux电源管理(12)_Hibernate功能
作者:Physh 发布于:2014-12-22 11:51 分类:电源管理子系统
本文简要分析了Linux一种Hibernation实现机制——Swap Suspend的是实现方法。本文会尽量从机制出发,不会深入代码分析,如果您感兴趣,可以参照附件给出的流程图,阅读内核代码,相信您也可以找到其中乐趣。
A. Swap Suspend的原因
B. 如何实现STF
C. Swap Suspend的关键
标签: Kernel hibernation
Linux cpuidle framework(1)_概述和软件架构
作者:wowo 发布于:2014-12-17 23:04 分类:电源管理子系统
在计算机系统中,CPU的功能是执行程序,总结起来就是我们在教科书上学到的:取指、译码、执行。那么问题来了,如果没有程序要执行,CPU要怎么办?也许您会说,停掉就是了啊。确实,是要停掉,但何时停、怎么停,却要仔细斟酌,因为实际的软硬件环境是非常复杂的。
我们回到Linux kernel上,Linux系统中,CPU被两类程序占用:一类是进程(或线程),也称进程上下文;另一类是各种中断、异常的处理程序,也称中断上下文。
进程的存在,是用来处理事务的,如读取用户输入并显示在屏幕上。而事务总有处理完的时候,如用户不再输入,也没有新的内容需要在屏幕上显示。此时这个进程就可以让出CPU,但会随时准备回来(如用户突然有按键动作)。同理,如果系统没有中断、异常事件,CPU就不会花时间在中断上下文。
在Linux kernel中,这种CPU的无所事事的状态,被称作idle状态,而cpuidle framework,就是为了管理这种状态。
注:cpuidle framework系列文章会以ARM64作为示例平台,由于ARM64刚刚发布不久,较早版本的kernel没有相关的代码,因此选用了最新的3.18-rc4版本的kernel。
Linux common clock framework(3)_实现逻辑分析
作者:wowo 发布于:2014-11-24 22:31 分类:电源管理子系统
前面两篇clock framework的分析文章,分别从clock consumer和clock provider的角度,介绍了Linux kernel怎么管理系统的clock资源,以及device driver怎么使用clock资源。本文将深入到clock framework的内部,分析相关的实现逻辑。
注:本文使用的kernel版本为linux-3.10.29。虽然最新版本的kernel增加了一些内容,但主要逻辑没有改变,就不紧跟kernel的步伐了。
Linux PM domain framework(1)_概述和使用流程
作者:wowo 发布于:2014-11-13 22:09 分类:电源管理子系统
在复杂的片上系统(SOC)中,设计者一般会将系统的供电分为多个独立的block,这称作电源域(Power Domain),这样做有很多好处,例如:
1)将不同功能模块的供电分开,减小相互之间的干扰(如模拟和数字分开)。
2)不同功能所需的电压大小不同:小电压能量损耗低,但对信号质量的要求较高;大电压能量损耗高,对信号质量的要求较低。因此可以根据实际情况,使用不同的电压供电,例如CPU core只需1.2v左右即可,而大部分的I/O则需要3.3v左右。
3)系统运行的大部分时间,并不需要所有模块都处于power on状态,因此可以通过关闭不工作模块的供电,将它们的耗电降为最低。
4)等等
虽然电源域的好处多多,却不是越多越好,因为划分电源域是需要成本的(需要在PMU中使用模拟电路完成,包括金钱成本和空间成本)。因此,大多数系统会根据功能,设置有限的几个电源域,例如:CPU core(1、2、3…);GPU;NAND;DDR;USB;Display;Codec;等等。
这种设计引出一个问题:存在多个模块共用一个电源域的情况。因而要求在对模块power on/off的时候,考虑power共用的情况:只要一个模块工作,就要power on;直到所有模块停止工作,才能power off。
Kernel的PM domain framework(位于drivers/base/power/domain.c中),提供了管理和使用系统power domain的统一方法,在解决上面提到的问题的同时,结合kernel的suspend、runtime pm、clock framework等机制,以非常巧妙、灵活的方式,管理系统供电,以达到高效、节能的目的。
同样,作为一个framework,我们可以从三个角度分析:使用者(consumer)的角度;提供者(provider)的角度;内部实现。具体如下。
注:本文的linux kernel版本为3.18-rc4。一般情况下,对于那些相对稳定的framework,蜗蜗不会说明文章所使用的kernel版本,但本文是个例外,因为PM domain很多方便、易用的patch,只能在最新版本(当前为3.18-rc4)kernel上才能看到。
标签: Linux PM 电源管理 framework domain
Linux common clock framework(2)_clock provider
作者:wowo 发布于:2014-10-23 23:49 分类:电源管理子系统
本文接上篇文章,从clock driver的角度,分析怎么借助common clock framework管理系统的时钟资源。换句话说,就是怎么编写一个clock driver。
由于kernel称clock driver为clock provider(相应的,clock的使用者为clock consumer),因此本文遵循这个规则,统一以clock provider命名。
标签: Linux framework clock provider dts
Linux common clock framework(1)_概述
作者:wowo 发布于:2014-10-20 23:06 分类:电源管理子系统
common clock framework是用来管理系统clock资源的子系统,根据职能,可分为三个部分:
1)向其它driver提供操作clocks的通用API。
2)实现clock控制的通用逻辑,这部分和硬件无关。
3)将和硬件相关的clock控制逻辑封装成操作函数集,交由底层的platform开发者实现,由通用逻辑调用。
因此,蜗蜗会将clock framework的分析文章分为3篇:
第一篇为概述和通用API的使用说明,面向的读者是使用clock的driver开发者,目的是掌握怎么使用clock framework(就是本文);
第二篇为底层操作函数集的解析和使用说明,面向的读者是platform clock driver的开发者,目的是掌握怎么借助clock framework管理系统的时钟资源;
第三篇为clock framework的内部逻辑解析,面向的读者是linux kernel爱好者,目的是理解怎么实现clock framework。
注1:任何framework的职能分类都是如此,因此都可以按照这个模式分析。
Linux电源管理(11)_Runtime PM之功能描述
作者:wowo 发布于:2014-10-8 23:32 分类:电源管理子系统
终于可以写Runtime PM了,说实话,蜗蜗有点小激动。因为从个人的角度讲,我很推崇使用Runtime PM进行日常的动态电源管理,而不是suspend机制。
软件工程的基本思想就是模块化:高内聚和低耦合。通俗地讲呢,就是“各人自扫门前雪”,尽量扫好自己的(高内聚),尽量不和别人交互(低耦合)。而Runtime PM正体现了这一思想:每个设备(包括CPU)都处理好自身的电源管理工作,尽量以最低的能耗完成交代的任务,尽量在不需要工作的时候进入低功耗状态,尽量不和其它模块有过多耦合。每个设备都是最节省的话,整个系统一定是最节省的,最终达到无所谓睡、无所谓醒的天人合一状态。
讲到这里想到自己的一则趣事:大学时,蜗蜗是寝室长,但不爱打扫卫生,于是就提出一个口号,“不污染,不治理;谁污染,谁治理”。结果呢,大家猜就是了,呵呵。言归正传,开始吧。
Linux电源管理(10)_autosleep
作者:wowo 发布于:2014-9-18 23:42 分类:电源管理子系统
Autosleep也是从Android wakelocks补丁集中演化而来的(Linux电源管理(9)_wakelocks),用于取代Android wakelocks中的自动休眠功能。它基于wakeup source实现,从代码逻辑上讲,autosleep是一个简单的功能,但背后却埋藏着一个值得深思的话题:
计算机的休眠(通常是STR、Standby、Hibernate等suspend操作),应当在什么时候、由谁触发?
蜗蜗在“Linux电源管理(2)_Generic PM之基本概念和软件架构”中有提过,在传统的操作场景下,如PC、笔记本电脑,这个问题很好回答:由用户、在其不想或不再使用时。
但在移动互联时代,用户随时随地都可能使用设备,上面的回答就不再成立,怎么办?这时,Android提出了“Opportunistic suspend(这个词汇太传神了,很难用简洁的中文去翻译,就不翻译了)”的理论,通俗的讲,就是“逮到机会就睡”。而autosleep功能,无论是基于Android wakelocks的autosleep,还是基于wakeup source的autosleep,都是为了实现“Opportunistic suspend”。
相比较“对多样的系统组件单独控制”的电源管理方案(如Linux kernel的Dynamic PM),“Opportunistic suspend”是非常简单的,只要检测到系统没有事情在做(逮到机会),就suspend整个系统。这对系统的开发人员(特别是driver开发者)来说,很容易实现,几乎不需要特别处理。
但困难的是,“系统没有事情在做”的判断依据是什么?能判断准确吗?会不会浪费过多的资源在"susend->resume-supsend…”的无聊动作上?如果只有一个设备在做事情,其它设备岂不是也得陪着耗电?等等…
所以,实现“Opportunistic suspend”机制的autosleep功能,是充满争议的。说实话,也是不优雅的。但它可以解燃眉之急,因而虽然受非议,却在Android设备中广泛使用。
其实Android中很多机制都是这样的(如wakelocks,如binder,等等),可以这样比方:Android是设计中的现实主义,Linux kernel是设计中的理想主义,当理想和现实冲突时,怎么调和?不只是Linux kernel,其它的诸如设计、工作和生活,都会遇到类似的冲突,怎么对待?没有答案,但有一个原则:不要偏执,不要试图追求非黑即白的真理!
我们应该庆幸有Android这样的开源软件,让我们可以对比,可以思考。偏题有点远,言归正传吧,去看看autosleep的实现。
Linux电源管理(9)_wakelocks
作者:wowo 发布于:2014-9-14 23:17 分类:电源管理子系统
wakelocks是一个有故事的功能。
wakelocks最初出现在Android为linux kernel打的一个补丁集上,该补丁集实现了一个名称为“wakelocks”的系统调用,该系统调用允许调用者阻止系统进入低功耗模式(如idle、suspend等)。同时,该补丁集更改了Linux kernel原生的电源管理执行过程(kernel/power/main.c中的state_show和state_store),转而执行自定义的state_show、state_store。
这种做法是相当不规范的,它是典型的只求实现功能,不择手段。就像国内很多的Linux开发团队,要实现某个功能,都不去弄清楚kernel现有的机制、框架,牛逼哄哄的猛干一番。最后功能是实现了,可都不知道重复造了多少轮子,浪费了多少资源。到此打住,Android的开发者不会这么草率,他们推出wakelocks机制一定有一些苦衷,我们就不评论了。
但是,虽然有苦衷,kernel的开发者可是有原则的,死活不让这种机制合并到kernel分支(换谁也不让啊),直到kernel自身的wakeup events framework成熟后,这种僵局才被打破。因为Android开发者想到了一个坏点子:不让合并就不让合并呗,我用你的机制(wakeup source),再实现一个就是了。至此,全新的wakelocks出现了。
所以wakelocks有两个,早期Android版本的wakelocks几乎已经销声匿迹了,不仔细找还真找不到它的source code(这里有一个链接,但愿读者看到时还有效,drivers/android/power.c)。本文不打算翻那本旧黄历,所以就focus在新的wakelocks上(drivers/power/wakelock.c,较新的kernel都支持)。
功能
最新评论
- wangjing
写得太好了 - wangjing
写得太好了! - DRAM
圖面都沒辦法顯示出來好像掛點了。 - Simbr
bus至少是不是还有个subsystem? - troy
@testtest:只要ldrex-modify-strex... - gh
Linux 内核在 sparse 内存模型基础上实现了vme...
文章分类
随机文章
文章存档
- 2025年4月(5)
- 2024年2月(1)
- 2023年5月(1)
- 2022年10月(1)
- 2022年8月(1)
- 2022年6月(1)
- 2022年5月(1)
- 2022年4月(2)
- 2022年2月(2)
- 2021年12月(1)
- 2021年11月(5)
- 2021年7月(1)
- 2021年6月(1)
- 2021年5月(3)
- 2020年3月(3)
- 2020年2月(2)
- 2020年1月(3)
- 2019年12月(3)
- 2019年5月(4)
- 2019年3月(1)
- 2019年1月(3)
- 2018年12月(2)
- 2018年11月(1)
- 2018年10月(2)
- 2018年8月(1)
- 2018年6月(1)
- 2018年5月(1)
- 2018年4月(7)
- 2018年2月(4)
- 2018年1月(5)
- 2017年12月(2)
- 2017年11月(2)
- 2017年10月(1)
- 2017年9月(5)
- 2017年8月(4)
- 2017年7月(4)
- 2017年6月(3)
- 2017年5月(3)
- 2017年4月(1)
- 2017年3月(8)
- 2017年2月(6)
- 2017年1月(5)
- 2016年12月(6)
- 2016年11月(11)
- 2016年10月(9)
- 2016年9月(6)
- 2016年8月(9)
- 2016年7月(5)
- 2016年6月(8)
- 2016年5月(8)
- 2016年4月(7)
- 2016年3月(5)
- 2016年2月(5)
- 2016年1月(6)
- 2015年12月(6)
- 2015年11月(9)
- 2015年10月(9)
- 2015年9月(4)
- 2015年8月(3)
- 2015年7月(7)
- 2015年6月(3)
- 2015年5月(6)
- 2015年4月(9)
- 2015年3月(9)
- 2015年2月(6)
- 2015年1月(6)
- 2014年12月(17)
- 2014年11月(8)
- 2014年10月(9)
- 2014年9月(7)
- 2014年8月(12)
- 2014年7月(6)
- 2014年6月(6)
- 2014年5月(9)
- 2014年4月(9)
- 2014年3月(7)
- 2014年2月(3)
- 2014年1月(4)