Linux时间子系统之(三):用户空间接口函数

作者:linuxer 发布于:2014-12-24 15:48 分类:时间子系统

从应用程序的角度看,内核需要提供的和时间相关的服务有三种:

1、和系统时间相关的服务。例如,在向数据库写入一条记录的时候,需要记录操作时间(何年何月何日何时)。

2、让进程睡眠一段时间

3、和timer相关的服务。在一段指定的时间过去后,kernel要alert用户进程

本文主要描述和时间子系统相关的用户空间接口函数知识。

阅读全文>>

标签: Linux时间子系统用户空间接口函数

评论(19) 浏览(37437)

Linux时间子系统之(一):时间的基本概念

作者:linuxer 发布于:2014-12-23 12:22 分类:时间子系统

本文使用Q & A的方式来和大家以前探讨一下时间的基本概念

阅读全文>>

标签: 时间基础

评论(30) 浏览(34816)

Linux时间子系统系列文章之目录

作者:linuxer 发布于:2014-12-23 9:59 分类:时间子系统

本文对近期要撰写的Linux时间子系统的相关文章进行规划。

另外,需要说明的是这里的时间概念就是牛顿经典力学中的时间,一般而言,当进入微观领域(例如原子或者各种基本粒子级别)或者宏观领域(整个银河系啊、宇宙大爆炸什么的)的时候,时间变成一个相对的概念,不过还是让物理学家去研究吧。

阅读全文>>

标签: Linux时间子系统

评论(23) 浏览(30579)

Linux时间子系统之(十二):periodic tick

作者:linuxer 发布于:2014-12-11 18:59 分类:时间子系统

tick device layer是clock event core模块的用户,tick device layer利用clock event core模块提供的接口实现了各种tick device功能:周期性tick、tickless mode、broadcast tick等。本文从最简单的周期性tick开始,描述tick device的基本概念以及周期性tick的工作原理。

阅读全文>>

标签: 周期性tick periodic tick

评论(7) 浏览(22798)

Linux时间子系统之(十六):clockevent

作者:linuxer 发布于:2014-12-9 19:56 分类:时间子系统

clockevent模块的代码位于linux/kernel/time/clockevents.c,是用来管理系统中的能够触发中断的timer硬件资源的一个模块,该模块的功能分成四个部分:

1)向上层的其它driver(我们称之clock event user)提供操作clock event的通用API。

2) 实现clock event控制的通用逻辑,这部分和硬件无关,我们也称之clock event core(其实内核有各种core、input core,USB core,I2C core等等,概念是类似)。 有了它,clock event user(例如high resolution timer)再也不用担心底层的硬件细节了,特别是底层的timer硬件是arch相关的时候(不要怀疑,linux kernel有过这样的时代)。

3)将和硬件相关的clock event控制逻辑封装成操作函数集,并向底层clockevent chip driver提供注册接口。这样,clock event控制的通用逻辑就可以直接调用底层操作函数,进行具体的硬件操作。

4)实现sysfs用户空间接口。

本文将分成4个章节,分别描述这四个部分的代码逻辑。

阅读全文>>

标签: clockevent

评论(31) 浏览(26340)

kobject在字符设备中的使用

作者:linuxer 发布于:2014-12-4 18:14

关于kobject的基本概念的描述请参考Linux设备模型(2)_Kobject中的描述。本文主要以字符设备为例,描述内核中使用kobject的一个场景,以便加深对kobject这个内核神器的理解。

阅读全文>>

标签: kobject cdev

评论(6) 浏览(13682)

Linux时间子系统之(十七):ARM generic timer驱动代码分析

作者:linuxer 发布于:2014-12-2 10:47 分类:时间子系统

关注ARM平台上timer driver(clocksource chip driver和clockevent chip driver)的驱动工程师应该会注意到timer硬件的演化过程。在单核时代,各个SOC vendor厂商购买ARM core的IP,然后自己设计SOC上的peripherals,这里面就包括了timer的硬件。由于没有统一的标准,各个厂商的设计各不相同,这给驱 动工程师带来了工作量。然而,如果仅仅是工作量的话就还好,实际上,不仅仅如此。linux的时间子系统要求硬件timer提供下面两种能力:一是 free running的counter,此外需要能够在指定的counter值上产生中断的能力。有些硬件厂商会考虑到软件的需求(例如:PXA270的 timer硬件),但是有些硬件厂商做的就不够,例如:S3C2451的timer硬件。我们在写PXA270的timer硬件驱动的时候是毫无压力的, 而在写S3C2451的timer的驱动的时候,最大的愿望就是把三星的HW timer的设计人员拉出来打一顿。

进入多核时代后,ARM 公司提供了timer的硬件设计,集成在了自己的多核结构中。例如:在Cortex A15 MPcore的硬件体系结构中有一个HW block叫做Generic Timer(该硬件取代了A9中的global timer、private timer的功能),为系统提供了计时以及触发timer event的功能。

本文主要描述了Generic Timer的相关硬件知识以及在linux kernel中如何驱动该硬件。Generic Timer的代码位于linux-3.14/drivers/clocksource/目录下,该目录保存了所有clock source相关的driver,arm_arch_timer.c就是驱动Cortex A15 MPcore的Generic Timer的。

阅读全文>>

标签: armv7-timer arm_arch_timer

评论(72) 浏览(62564)

Linux时间子系统之(十五):clocksource

作者:linuxer 发布于:2014-12-1 19:03 分类:时间子系统

和洋葱一样,软件也是有层次的,内核往往需要对形形色色的某类型的驱动进行抽象,屏蔽掉其具体的特质,获取该类驱动共同的逻辑,而又根据这些逻辑撰写该类 驱动的抽象层。嵌入式系统总是会提供timer的硬件block,软件需要对timer硬件提供的功能进行抽象:linux kernel将timer类型的硬件抽象成两个组件,一是free running的counter,另外一个是指定的counter值上产生中断的能力。本文主要描述第一个组件,在内核中被称作clock source。

阅读全文>>

标签: 时间子系统 clocksource

评论(15) 浏览(33351)

Linux内核同步机制之(三):memory barrier

作者:linuxer 发布于:2014-11-14 19:20 分类:内核同步机制

我记得以前上学的时候大家经常说的一个词汇叫做所见即所得,有些编程工具是所见即所得的,给程序员带来极大的方便。对于一个c程序员,我们的编写的 代码能所见即所得吗?我们看到的c程序的逻辑是否就是最后CPU运行的结果呢?很遗憾,不是,我们的“所见”和最后的执行结果隔着:

1、编译器

2、CPU取指执行

编 译器将符合人类思考的逻辑(c代码)翻译成了符合CPU运算规则的汇编指令,编译器了解底层CPU的思维模式,因此,它可以在将c翻译成汇编的时候进行优 化(例如内存访问指令的重新排序),让产出的汇编指令在CPU上运行的时候更快。然而,这种优化产出的结果未必符合程序员原始的逻辑,因此,作为程序员, 作为c程序员,必须有能力了解编译器的行为,并在通过内嵌在c代码中的memory barrier来指导编译器的优化行为(这种memory barrier又叫做优化屏障,Optimization barrier),让编译器产出即高效,又逻辑正确的代码。

CPU的核心思想就 是取指执行,对于in-order的单核CPU,并且没有cache(这种CPU在现实世界中还存在吗?),汇编指令的取指和执行是严格按照顺序进行的, 也就是说,汇编指令就是所见即所得的,汇编指令的逻辑被严格的被CPU执行。然而,随着计算机系统越来越复杂(多核、cache、 superscalar、out-of-order),使用汇编指令这样贴近处理器的语言也无法保证其被CPU执行的结果的一致性,从而需要程序员(看, 人还是最不可以替代的)告知CPU如何保证逻辑正确。

综上所述,memory barrier是一种保证内存访问顺序的一种方法,让系统中的HW block(各个cpu、DMA controler、device等)对内存有一致性的视角。

阅读全文>>

标签: Memory 内存屏障 barrier

评论(26) 浏览(66808)

linux kernel的中断子系统之(八):softirq

作者:linuxer 发布于:2014-10-24 11:53 分类:中断子系统

对于中断处理而言,linux将其分成了两个部分,一个叫做中断handler(top half),是全程关闭中断的,另外一部分是deferable task(bottom half),属于不那么紧急需要处理的事情。在执行bottom half的时候,是开中断的。有多种bottom half的机制,例如:softirq、tasklet、workqueue或是直接创建一个kernel thread来执行bottom half(这在旧的kernel驱动中常见,现在,一个理智的driver厂商是不会这么做的)。本文主要讨论softirq机制。由于tasklet是 基于softirq的,因此本文也会提及tasklet,但主要是从需求层面考虑,不会涉及其具体的代码实现。

在普通的驱动中一般是不会用 到softirq,但是由于驱动经常使用的tasklet是基于softirq的,因此,了解softirq机制有助于撰写更优雅的driver。 softirq不能动态分配,都是静态定义的。内核已经定义了若干种softirq number,例如网络数据的收发、block设备的数据访问(数据量大,通信带宽高),timer的deferable task(时间方面要求高)。本文的第二章讨论了softirq和tasklet这两种机制有何不同,分别适用于什么样的场景。第三章描述了一些 context的概念,这是要理解后续内容的基础。第四章是进入softirq的实现,对比hard irq来解析soft irq的注册、触发,调度的过程。

注:本文中的linux kernel的版本是3.14

阅读全文>>

标签: 软中断 softirq

评论(132) 浏览(106344)

Copyright @ 2013-2015 蜗窝科技 All rights reserved. Powered by emlog