Device Tree(三):代码分析

作者:linuxer 发布于:2014-6-6 16:03 分类:统一设备模型

一、前言

Device Tree总共有三篇,分别是:

1、为何要引入Device Tree,这个机制是用来解决什么问题的?(请参考引入Device Tree的原因

2、Device Tree的基础概念(请参考DT基础概念

3、ARM linux中和Device Tree相关的代码分析(这是本文的主题)

本文主要内容是:以Device Tree相关的数据流分析为索引,对ARM linux kernel的代码进行解析。主要的数据流包括:

1、初始化流程。也就是扫描dtb并将其转换成Device Tree Structure。

2、传递运行时参数传递以及platform的识别流程分析

3、如何将Device Tree Structure并入linux kernel的设备驱动模型。

注:本文中的linux kernel使用的是3.14版本。

 

二、如何通过Device Tree完成运行时参数传递以及platform的识别功能?

1、汇编部分的代码分析

linux/arch/arm/kernel/head.S文件定义了bootloader和kernel的参数传递要求:

MMU = off, D-cache = off, I-cache = dont care, r0 = 0, r1 = machine nr, r2 = atags or dtb pointer.

目前的kernel支持旧的tag list的方式,同时也支持device tree的方式。r2可能是device tree binary file的指针(bootloader要传递给内核之前要copy到memory中),也可以能是tag list的指针。在ARM的汇编部分的启动代码中(主要是head.S和head-common.S),machine type ID和指向DTB或者atags的指针被保存在变量__machine_arch_type和__atags_pointer中,这么做是为了后续c代码进行处理。

2、和device tree相关的setup_arch代码分析

具体的c代码都是在setup_arch中处理,这个函数是一个总的入口点。具体代码如下(删除了部分无关代码):

void __init setup_arch(char **cmdline_p)
{
    const struct machine_desc *mdesc;

……

    mdesc = setup_machine_fdt(__atags_pointer);
    if (!mdesc)
        mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
    machine_desc = mdesc;
    machine_name = mdesc->name;

……
}

对于如何确定HW platform这个问题,旧的方法是静态定义若干的machine描述符(struct machine_desc ),在启动过程中,通过machine type ID作为索引,在这些静态定义的machine描述符中扫描,找到那个ID匹配的描述符。在新的内核中,首先使用setup_machine_fdt来setup machine描述符,如果返回NULL,才使用传统的方法setup_machine_tags来setup machine描述符。传统的方法需要给出__machine_arch_type(bootloader通过r1寄存器传递给kernel的)和tag list的地址(用来进行tag parse)。__machine_arch_type用来寻找machine描述符;tag list用于运行时参数的传递。随着内核的不断发展,相信有一天linux kernel会完全抛弃tag list的机制。

3、匹配platform(machine描述符)

setup_machine_fdt函数的功能就是根据Device Tree的信息,找到最适合的machine描述符。具体代码如下:

const struct machine_desc * __init setup_machine_fdt(unsigned int dt_phys)
{
    const struct machine_desc *mdesc, *mdesc_best = NULL;

    if (!dt_phys || !early_init_dt_scan(phys_to_virt(dt_phys)))
        return NULL;

    mdesc = of_flat_dt_match_machine(mdesc_best, arch_get_next_mach);

    if (!mdesc) { 
        出错处理
    }

    /* Change machine number to match the mdesc we're using */
    __machine_arch_type = mdesc->nr;

    return mdesc;
}

early_init_dt_scan函数有两个功能,一个是为后续的DTB scan进行准备工作,另外一个是运行时参数传递。具体请参考下面一个section的描述。

of_flat_dt_match_machine是在machine描述符的列表中scan,找到最合适的那个machine描述符。我们首先看如何组成machine描述符的列表。和传统的方法类似,也是静态定义的。DT_MACHINE_START和MACHINE_END用来定义一个machine描述符。编译的时候,compiler会把这些machine descriptor放到一个特殊的段中(.arch.info.init),形成machine描述符的列表。machine描述符用下面的数据结构来标识(删除了不相关的member):

struct machine_desc {
    unsigned int        nr;        /* architecture number    */
    const char *const     *dt_compat;    /* array of device tree 'compatible' strings    */

……

   };

nr成员就是过去使用的machine type ID。内核machine描述符的table有若干个entry,每个都有自己的ID。bootloader传递了machine type ID,指明使用哪一个machine描述符。目前匹配machine描述符使用compatible strings,也就是dt_compat成员,这是一个string list,定义了这个machine所支持的列表。在扫描machine描述符列表的时候需要不断的获取下一个machine描述符的compatible字符串的信息,具体的代码如下:

static const void * __init arch_get_next_mach(const char *const **match)
{
    static const struct machine_desc *mdesc = __arch_info_begin;
    const struct machine_desc *m = mdesc;

    if (m >= __arch_info_end)
        return NULL;

    mdesc++;
    *match = m->dt_compat;
    return m;
}

__arch_info_begin指向machine描述符列表第一个entry。通过mdesc++不断的移动machine描述符指针(Note:mdesc是static的)。match返回了该machine描述符的compatible string list。具体匹配的算法倒是很简单,就是比较字符串而已,一个是root node的compatible字符串列表,一个是machine描述符的compatible字符串列表,得分最低的(最匹配的)就是我们最终选定的machine type。

4、运行时参数传递

运行时参数是在扫描DTB的chosen node时候完成的,具体的动作就是获取chosen node的bootargs、initrd等属性的value,并将其保存在全局变量(boot_command_line,initrd_start、initrd_end)中。使用tag list方法是类似的,通过分析tag list,获取相关信息,保存在同样的全局变量中。具体代码位于early_init_dt_scan函数中:

bool __init early_init_dt_scan(void *params)
{
    if (!params)
        return false;

    /* 全局变量initial_boot_params指向了DTB的header*/
    initial_boot_params = params;

    /* 检查DTB的magic,确认是一个有效的DTB */
    if (be32_to_cpu(initial_boot_params->magic) != OF_DT_HEADER) {
        initial_boot_params = NULL;
        return false;
    }

    /* 扫描 /chosen node,保存运行时参数(bootargs)到boot_command_line,此外,还处理initrd相关的property,并保存在initrd_start和initrd_end这两个全局变量中 */
    of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);

    /* 扫描根节点,获取 {size,address}-cells信息,并保存在dt_root_size_cells和dt_root_addr_cells全局变量中 */
    of_scan_flat_dt(early_init_dt_scan_root, NULL);

    /* 扫描DTB中的memory node,并把相关信息保存在meminfo中,全局变量meminfo保存了系统内存相关的信息。*/
    of_scan_flat_dt(early_init_dt_scan_memory, NULL);

    return true;
}

设定meminfo(该全局变量确定了物理内存的布局)有若干种途径:

1、通过tag list(tag是ATAG_MEM)传递memory bank的信息。

2、通过command line(可以用tag list,也可以通过DTB)传递memory bank的信息。

3、通过DTB的memory node传递memory bank的信息。

目前当然是推荐使用Device Tree的方式来传递物理内存布局信息。

 

三、初始化流程

在系统初始化的过程中,我们需要将DTB转换成节点是device_node的树状结构,以便后续方便操作。具体的代码位于setup_arch->unflatten_device_tree中。

void __init unflatten_device_tree(void)
{
    __unflatten_device_tree(initial_boot_params, &of_allnodes,
                early_init_dt_alloc_memory_arch);

    /* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
    of_alias_scan(early_init_dt_alloc_memory_arch);
}

我们用struct device_node 来抽象设备树中的一个节点,具体解释如下:

struct device_node {
    const char *name;----------------------device node name
    const char *type;-----------------------对应device_type的属性
    phandle phandle;-----------------------对应该节点的phandle属性
    const char *full_name; ----------------从“/”开始的,表示该node的full path

    struct    property *properties;-------------该节点的属性列表
    struct    property *deadprops; ----------如果需要删除某些属性,kernel并非真的删除,而是挂入到deadprops的列表
    struct    device_node *parent;------parent、child以及sibling将所有的device node连接起来
    struct    device_node *child;
    struct    device_node *sibling;
    struct    device_node *next;  --------通过该指针可以获取相同类型的下一个node
    struct    device_node *allnext;-------通过该指针可以获取node global list下一个node
    struct    proc_dir_entry *pde;--------开放到userspace的proc接口信息
    struct    kref kref;-------------该node的reference count
    unsigned long _flags;
    void    *data;
};

unflatten_device_tree函数的主要功能就是扫描DTB,将device node被组织成:

1、global list。全局变量struct device_node *of_allnodes就是指向设备树的global list

2、tree。

这些功能主要是在__unflatten_device_tree函数中实现,具体代码如下(去掉一些无关紧要的代码):

static void __unflatten_device_tree(struct boot_param_header *blob,---需要扫描的DTB
                 struct device_node **mynodes,---------global list指针
                 void * (*dt_alloc)(u64 size, u64 align))------内存分配函数
{
    unsigned long size;
    void *start, *mem;
    struct device_node **allnextp = mynodes;

    此处删除了health check代码,例如检查DTB header的magic,确认blob的确指向一个DTB。

    /* scan过程分成两轮,第一轮主要是确定device-tree structure的长度,保存在size变量中 */
    start = ((void *)blob) + be32_to_cpu(blob->off_dt_struct);
    size = (unsigned long)unflatten_dt_node(blob, 0, &start, NULL, NULL, 0);
    size = ALIGN(size, 4);

    /* 初始化的时候,并不是扫描到一个node或者property就分配相应的内存,实际上内核是一次性的分配了一大片内存,这些内存包括了所有的struct device_node、node name、struct property所需要的内存。*/
    mem = dt_alloc(size + 4, __alignof__(struct device_node));
    memset(mem, 0, size);

    *(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);   //用来检验后面unflattening是否溢出

    /* 这是第二轮的scan,第一次scan是为了得到保存所有node和property所需要的内存size,第二次就是实打实的要构建device node tree了 */
    start = ((void *)blob) + be32_to_cpu(blob->off_dt_struct);
    unflatten_dt_node(blob, mem, &start, NULL, &allnextp, 0); 
   

    此处略去校验溢出和校验OF_DT_END。
}

具体的scan是在unflatten_dt_node函数中,如果已经清楚地了解DTB的结构,其实代码很简单,这里就不再细述了。

四、如何并入linux kernel的设备驱动模型

在linux kernel引入统一设备模型之后,bus、driver和device形成了设备模型中的铁三角。在驱动初始化的时候会将代表该driver的一个数据结构(一般是xxx_driver)挂入bus上的driver链表。device挂入链表分成两种情况,一种是即插即用类型的bus,在插入一个设备后,总线可以检测到这个行为并动态分配一个device数据结构(一般是xxx_device,例如usb_device),之后,将该数据结构挂入bus上的device链表。bus上挂满了driver和device,那么如何让device遇到“对”的那个driver呢?那么就要靠缘分了,也就是bus的match函数。

上面是一段导论,我们还是回到Device Tree。导致Device Tree的引入ARM体系结构的代码其中一个最重要的原因的太多的静态定义的表格。例如:一般代码中会定义一个static struct platform_device *xxx_devices的静态数组,在初始化的时候调用platform_add_devices。这些静态定义的platform_device往往又需要静态定义各种resource,这导致静态表格进一步增大。如果ARM linux中不再定义这些表格,那么一定需要一个转换的过程,也就是说,系统应该会根据Device tree来动态的增加系统中的platform_device。当然,这个过程并非只是发生在platform bus上(具体可以参考“Platform Device”的设备),也可能发生在其他的非即插即用的bus上,例如AMBA总线、PCI总线。一言以蔽之,如果要并入linux kernel的设备驱动模型,那么就需要根据device_node的树状结构(root是of_allnodes)将一个个的device node挂入到相应的总线device链表中。只要做到这一点,总线机制就会安排device和driver的约会。

当然,也不是所有的device node都会挂入bus上的设备链表,比如cpus node,memory node,choose node等。

1、cpus node的处理

这部分的处理可以参考setup_arch->arm_dt_init_cpu_maps中的代码,具体的代码如下:

void __init arm_dt_init_cpu_maps(void)
{
    scan device node global list,寻找full path是“/cpus”的那个device node。cpus这个device node只是一个容器,其中包括了各个cpu node的定义以及所有cpu node共享的property。
    cpus = of_find_node_by_path("/cpus");

 

    for_each_child_of_node(cpus, cpu) {           遍历cpus的所有的child node
        u32 hwid;

        if (of_node_cmp(cpu->type, "cpu"))        我们只关心那些device_type是cpu的node
            continue;


        if (of_property_read_u32(cpu, "reg", &hwid)) {    读取reg属性的值并赋值给hwid
            return;
        }

        reg的属性值的8 MSBs必须设置为0,这是ARM CPU binding定义的。
        if (hwid & ~MPIDR_HWID_BITMASK)  
            return;

        不允许重复的CPU id,那是一个灾难性的设定
        for (j = 0; j < cpuidx; j++)
            if (WARN(tmp_map[j] == hwid, "Duplicate /cpu reg "
                             "properties in the DT\n"))
                return;

数组tmp_map保存了系统中所有CPU的MPIDR值(CPU ID值),具体的index的编码规则是: tmp_map[0]保存了booting CPU的id值,其余的CPU的ID值保存在1~NR_CPUS的位置。
        if (hwid == mpidr) {
            i = 0;
            bootcpu_valid = true;
        } else {
            i = cpuidx++;
        }

        tmp_map[i] = hwid;
    }

根据DTB中的信息设定cpu logical map数组。

    for (i = 0; i < cpuidx; i++) {
        set_cpu_possible(i, true);
        cpu_logical_map(i) = tmp_map[i];
    }
}

要理解这部分的内容,需要理解ARM CUPs binding的概念,可以参考linux/Documentation/devicetree/bindings/arm目录下的CPU.txt文件的描述。

2、memory的处理

这部分的处理可以参考setup_arch->setup_machine_fdt->early_init_dt_scan->early_init_dt_scan_memory中的代码。具体如下:

int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
                     int depth, void *data)
{
    char *type = of_get_flat_dt_prop(node, "device_type", NULL); 获取device_type属性值
    __be32 *reg, *endp;
    unsigned long l;

    在初始化的时候,我们会对每一个device node都要调用该call back函数,因此,我们要过滤掉那些和memory block定义无关的node。和memory block定义有的节点有两种,一种是node name是memory@形态的,另外一种是node中定义了device_type属性并且其值是memory。
    if (type == NULL) {
        if (depth != 1 || strcmp(uname, "memory@0") != 0)
            return 0;
    } else if (strcmp(type, "memory") != 0)
        return 0;

    获取memory的起始地址和length的信息。有两种属性和该信息有关,一个是linux,usable-memory,不过最新的方式还是使用reg属性。

reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
    if (reg == NULL)
        reg = of_get_flat_dt_prop(node, "reg", &l);
    if (reg == NULL)
        return 0;

    endp = reg + (l / sizeof(__be32));

reg属性的值是address,size数组,那么如何来取出一个个的address/size呢?由于memory node一定是root node的child,因此dt_root_addr_cells(root node的#address-cells属性值)和dt_root_size_cells(root node的#size-cells属性值)之和就是address,size数组的entry size。

    while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
        u64 base, size;

        base = dt_mem_next_cell(dt_root_addr_cells, ®);
        size = dt_mem_next_cell(dt_root_size_cells, ®);

        early_init_dt_add_memory_arch(base, size);  将具体的memory block信息加入到内核中。
    }

    return 0;
}

 

3、interrupt controller的处理

初始化是通过start_kernel->init_IRQ->machine_desc->init_irq()实现的。我们用S3C2416为例来描述interrupt controller的处理过程。下面是machine描述符的定义。

DT_MACHINE_START(S3C2416_DT, "Samsung S3C2416 (Flattened Device Tree)")
……
    .init_irq    = irqchip_init,
……
MACHINE_END

在driver/irqchip/irq-s3c24xx.c文件中定义了两个interrupt controller,如下:

IRQCHIP_DECLARE(s3c2416_irq, "samsung,s3c2416-irq", s3c2416_init_intc_of);

IRQCHIP_DECLARE(s3c2410_irq, "samsung,s3c2410-irq", s3c2410_init_intc_of);

当然,系统中可以定义更多的irqchip,不过具体用哪一个是根据DTB中的interrupt controller node中的compatible属性确定的。在driver/irqchip/irqchip.c文件中定义了irqchip_init函数,如下:

void __init irqchip_init(void)
{
    of_irq_init(__irqchip_begin);
}

__irqchip_begin就是所有的irqchip的一个列表,of_irq_init函数是遍历Device Tree,找到匹配的irqchip。具体的代码如下:

void __init of_irq_init(const struct of_device_id *matches)
{
    struct device_node *np, *parent = NULL;
    struct intc_desc *desc, *temp_desc;
    struct list_head intc_desc_list, intc_parent_list;

    INIT_LIST_HEAD(&intc_desc_list);
    INIT_LIST_HEAD(&intc_parent_list);

    遍历所有的node,寻找定义了interrupt-controller属性的node,如果定义了interrupt-controller属性则说明该node就是一个中断控制器。

    for_each_matching_node(np, matches) {
        if (!of_find_property(np, "interrupt-controller", NULL) ||
                !of_device_is_available(np))
            continue;
       

分配内存并挂入链表,当然还有根据interrupt-parent建立controller之间的父子关系。对于interrupt controller,它也可能是一个树状的结构。
        desc = kzalloc(sizeof(*desc), GFP_KERNEL);
        if (WARN_ON(!desc))
            goto err;

        desc->dev = np;
        desc->interrupt_parent = of_irq_find_parent(np);
        if (desc->interrupt_parent == np)
            desc->interrupt_parent = NULL;
        list_add_tail(&desc->list, &intc_desc_list);
    }

    正因为interrupt controller被组织成树状的结构,因此初始化的顺序就需要控制,应该从根节点开始,依次递进到下一个level的interrupt controller。
    while (!list_empty(&intc_desc_list)) {  intc_desc_list链表中的节点会被一个个的处理,每处理完一个节点就会将该节点删除,当所有的节点被删除,整个处理过程也就是结束了。
        
        list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
            const struct of_device_id *match;
            int ret;
            of_irq_init_cb_t irq_init_cb;

            最开始的时候parent变量是NULL,确保第一个被处理的是root interrupt controller。在处理完root node之后,parent变量被设定为root interrupt controller,因此,第二个循环中处理的是所有parent是root interrupt controller的child interrupt controller。也就是level 1(如果root是level 0的话)的节点。

            if (desc->interrupt_parent != parent)
                continue;

            list_del(&desc->list);      -----从链表中删除
            match = of_match_node(matches, desc->dev);-----匹配并初始化
            if (WARN(!match->data,----------match->data是初始化函数
                "of_irq_init: no init function for %s\n",
                match->compatible)) {
                kfree(desc);
                continue;
            }

            irq_init_cb = (of_irq_init_cb_t)match->data;
            ret = irq_init_cb(desc->dev, desc->interrupt_parent);-----执行初始化函数
            if (ret) {
                kfree(desc);
                continue;
            }

           处理完的节点放入intc_parent_list链表,后面会用到
            list_add_tail(&desc->list, &intc_parent_list);
        }

        对于level 0,只有一个root interrupt controller,对于level 1,可能有若干个interrupt controller,因此要遍历这些parent interrupt controller,以便处理下一个level的child node。
        desc = list_first_entry_or_null(&intc_parent_list,
                        typeof(*desc), list);
        if (!desc) {
            pr_err("of_irq_init: children remain, but no parents\n");
            break;
        }
        list_del(&desc->list);
        parent = desc->dev;
        kfree(desc);
    }

    list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) {
        list_del(&desc->list);
        kfree(desc);
    }
err:
    list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
        list_del(&desc->list);
        kfree(desc);
    }
}

只有该node中有interrupt-controller这个属性定义,那么linux kernel就会分配一个interrupt controller的描述符(struct intc_desc)并挂入队列。通过interrupt-parent属性,可以确定各个interrupt controller的层次关系。在scan了所有的Device Tree中的interrupt controller的定义之后,系统开始匹配过程。一旦匹配到了interrupt chip列表中的项次后,就会调用相应的初始化函数。如果CPU是S3C2416的话,匹配到的是irqchip的初始化函数是s3c2416_init_intc_of。

OK,我们已经通过compatible属性找到了适合的interrupt controller,那么如何解析reg属性呢?我们知道,对于s3c2416的interrupt controller而言,其#interrupt-cells的属性值是4,定义为。每个域的解释如下:

(1)ctrl_num表示使用哪一种类型的interrupt controller,其值的解释如下:

      - 0 ... main controller
      - 1 ... sub controller
      - 2 ... second main controller

(2)parent_irq。对于sub controller,parent_irq标识了其在main controller的bit position。

(3)ctrl_irq标识了在controller中的bit位置。

(4)type标识了该中断的trigger type,例如:上升沿触发还是电平触发。

为了更顺畅的描述后续的代码,我需要简单的介绍2416的中断控制器,其block diagram如下:

2416intc

53个Samsung2416的中断源被分成两种类型,一种是需要sub寄存器进行控制的,例如DMA,系统中的8个DMA中断是通过两级识别的,先在SRCPND寄存器中得到是DMA中断的信息,具体是哪一个channel的DMA中断需要继续查询SUBSRC寄存器。那些不需要sub寄存器进行控制的,例如timer,5个timer的中断可以直接从SRCPND中得到。
中断MASK寄存器可以控制产生的中断是否要报告给CPU,当一个中断被mask的时候,虽然SRCPND寄存器中,硬件会set该bit,但是不会影响到INTPND寄存器,从而不会向CPU报告该中断。对于SUBMASK寄存器,如果该bit被set,也就是该sub中断被mask了,那么即便产生了对应的sub中断,也不会修改SRCPND寄存器的内容,只是修改SUBSRCPND中寄存器的内容。

不过随着硬件的演化,更多的HW block加入到SOC中,这使得中断源不够用了,因此中断寄存器又被分成两个group,一个是group 1(开始地址是0X4A000000,也就是main controller了),另外一个是group2(开始地址是0X4A000040,叫做second main controller)。group 1中的sub寄存器的起始地址是0X4A000018(也就是sub controller)。

了解了上面的内容后,下面的定义就比较好理解了:

static struct s3c24xx_irq_of_ctrl s3c2416_ctrl[] = {
    {
        .name = "intc", -----------main controller
        .offset = 0,
    }, {
        .name = "subintc", ---------sub controller
        .offset = 0x18,
        .parent = &s3c_intc[0],
    }, {
        .name = "intc2", ----------second main controller
        .offset = 0x40,
    }
};

对于s3c2416而言,irqchip的初始化函数是s3c2416_init_intc_of,s3c2416_ctrl作为参数传递给了s3c_init_intc_of,大部分的处理都是在s3c_init_intc_of函数中完成的,由于这个函数和中断子系统非常相关,这里就不详述了,后续会有一份专门的文档描述之。

4、GPIO controller的处理

暂不描述,后续会有一份专门的文档描述GPIO sub system。

5、machine初始化

machine初始化的代码可以沿着start_kernel->rest_init->kernel_init->kernel_init_freeable->do_basic_setup->do_initcalls路径寻找。在do_initcalls函数中,kernel会依次执行各个initcall函数,在这个过程中,会调用customize_machine,具体如下:

static int __init customize_machine(void)
{

    if (machine_desc->init_machine)
        machine_desc->init_machine();
    else
        of_platform_populate(NULL, of_default_bus_match_table, NULL, NULL);

    return 0;
}
arch_initcall(customize_machine);

在这个函数中,一般会调用machine描述符中的init_machine callback函数来把各种Device Tree中定义的platform device设备节点加入到系统(即platform bus的所有的子节点,对于device tree中其他的设备节点,需要在各自bus controller初始化的时候自行处理)。如果machine描述符中没有定义init_machine函数,那么直接调用of_platform_populate把所有的platform device加入到kernel中。对于s3c2416,其machine描述符中的init_machine callback函数就是s3c2416_dt_machine_init,代码如下:

static void __init s3c2416_dt_machine_init(void)
{
    of_platform_populate(NULL, --------传入NULL参数表示从root node开始scan

of_default_bus_match_table, s3c2416_auxdata_lookup, NULL);

    s3c_pm_init(); --------power management相关的初始化
}

由此可见,最终生成platform device的代码来自of_platform_populate函数。该函数的逻辑比较简单,遍历device node global list中所有的node,并调用of_platform_bus_create处理,of_platform_bus_create函数代码如下:

static int of_platform_bus_create(struct device_node *bus,-------------要创建的那个device node
                  const struct of_device_id *matches,-------要匹配的list
                  const struct of_dev_auxdata *lookup,------附属数据
                  struct device *parent, bool strict)---------------parent指向父节点。strict是否要求完全匹配
{
    const struct of_dev_auxdata *auxdata;
    struct device_node *child;
    struct platform_device *dev;
    const char *bus_id = NULL;
    void *platform_data = NULL;
    int rc = 0;

删除确保device node有compatible属性的代码。

    auxdata = of_dev_lookup(lookup, bus);  在传入的lookup table寻找和该device node匹配的附加数据
    if (auxdata) {
        bus_id = auxdata->name;-----------------如果找到,那么就用附加数据中的静态定义的内容
        platform_data = auxdata->platform_data;
    }

ARM公司提供了CPU core,除此之外,它设计了AMBA的总线来连接SOC内的各个block。符合这个总线标准的SOC上的外设叫做ARM Primecell Peripherals。如果一个device node的compatible属性值是arm,primecell的话,可以调用of_amba_device_create来向amba总线上增加一个amba device。

    if (of_device_is_compatible(bus, "arm,primecell")) {
        of_amba_device_create(bus, bus_id, platform_data, parent);
        return 0;
    }

    如果不是ARM Primecell Peripherals,那么我们就需要向platform bus上增加一个platform device了

    dev = of_platform_device_create_pdata(bus, bus_id, platform_data, parent);
    if (!dev || !of_match_node(matches, bus))
        return 0;

    一个device node可能是一个桥设备,因此要重复调用of_platform_bus_create来把所有的device node处理掉。

    for_each_child_of_node(bus, child) {
        pr_debug("   create child: %s\n", child->full_name);
        rc = of_platform_bus_create(child, matches, lookup, &dev->dev, strict);
        if (rc) {
            of_node_put(child);
            break;
        }
    }
    return rc;
}

具体增加platform device的代码在of_platform_device_create_pdata中,代码如下:

static struct platform_device *of_platform_device_create_pdata(
                    struct device_node *np,
                    const char *bus_id,
                    void *platform_data,
                    struct device *parent)
{
    struct platform_device *dev;

    if (!of_device_is_available(np))---------check status属性,确保是enable或者OK的。
        return NULL;

    of_device_alloc除了分配struct platform_device的内存,还分配了该platform device需要的resource的内存(参考struct platform_device 中的resource成员)。当然,这就需要解析该device node的interrupt资源以及memory address资源。

    dev = of_device_alloc(np, bus_id, parent);
    if (!dev)
        return NULL;

设定platform_device 中的其他成员
    dev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
    if (!dev->dev.dma_mask)
        dev->dev.dma_mask = &dev->dev.coherent_dma_mask;
    dev->dev.bus = &platform_bus_type;
    dev->dev.platform_data = platform_data;

    if (of_device_add(dev) != 0) {------------------把这个platform device加入统一设备模型系统中
        platform_device_put(dev);
        return NULL;
    }

    return dev;
}

原创文章,转发请注明出处。蜗窝科技www.wowotech.net。

标签: 设备树

评论:

rabbiteve
2015-07-29 23:56
看了三遍,每看一次都有新的收获。我现在碰到到dts解析出错:
[    0.000000] Invalid tag cc233e80 in flat device tree!
[    0.000000] Weird tag at end of node: cc233e80
[    0.000000] Weird tag at end of node: cc233e80
[    0.000000] Weird tag at end of node: cc233e80
[    0.000000] Weird tag at end of node: cc233e80
[    0.000000] Weird tag at end of node: cc233e80
[    0.000000] Weird tag at end of node: cc233e80
[    0.000000] Weird tag at end of tree: cc233e80
可是编译和反编译dts文件都没有问题。这种情况可能会是什么原因?或者应该怎么去查这种问题?

有时删掉一些无关的注释,还 会导致内核起不来。

谢谢!
wowo
2015-07-30 08:38
@rabbiteve:建议检查一下传递DTB的内存,大小是否足够,是否有异常,是否被其它软件覆盖。
rabbiteve
2015-07-30 11:10
@wowo:非常感谢, 我跟下内核最开始的启动代码,看看是否DTB区域被其他软件覆盖。目前我是将DTB放在zImage后面,再打uImage的头部。
rabbiteve
2015-07-30 12:27
@wowo:正如你说的,确实是DTB被BSS段覆盖了。
cat arch/arm/boot/zImage arch/arm/boot/dts/dra7-evm.dtb > zImage.dtb
./mkimage -A arm -O linux -C none  -T kernel -a 0x80008000 -e 0x80008000 -n 'linux.dra7-evm.ByCxh' -d zImage.dtb uImage.dra7-evm.dtb

然而arch/arm/boot/compressed/:
58   _edata = .;
59
60   . = ALIGN(8);
61   __bss_start = .;

我在__bss_start前面预留段空间给DTB,就正常了:
61   . += 0x20000; /* reserved for dtb */
62   __bss_start = .;

非常感谢!
callme_friend
2015-06-10 23:19
看了关于devicetree的博文后,有些疑问想请教:
1)传递进来的dtb被内核解析为device_node链表;那内核又是在哪里把他们转变成device呢?
2)而且按照由根到叶的启动顺序,必须是先有总线,然后才能在总线上注册设备,那dts有反应总线的吗?对于arm中常用的platform,在dts文件中没有看到platform的关键字。
linuxer
2015-06-10 23:40
@callme_friend:1)在machine初始化那一小节中有描述的(of_platform_populate),你再仔细看看。
2)对于其他平台我不是很熟悉,我这里只是描述ARM平台的内容。对于ARM,device tree描述的device node被加入platform bus或者是amba-bus。
callme_friend
2015-06-11 11:07
@linuxer:也就是说,arm dts中的设备,除了cpu、memory、chosen、interrupt节点,全部都默认挂入platform总线?
wowo
2015-06-11 15:26
@callme_friend:是的,DTS只描述platform device(AMBA除外)。这是基于这样的考虑:其它bus上的device,其bus应该具备动态枚举设备的能力。只有platform device,才一开机就存在,需要靠device tree来描述。
jinxin
2015-12-22 10:49
@wowo:请问那像一些i2c, spi设备呢?也是会挂在platform bus下么?
这好象不合适把
wowo
2015-12-22 11:05
@jinxin:这些设备当然是挂在i2c或者spi bus下,然后枚举是由i2c bus的driver负责。
tuyer
2015-05-28 16:20
@wowo:
现在的高通平台是生成多个DTB文件, 然后再用一个dtbtool将其整合成一个dt.img文件放在 boot.img中,
我想问一下有没有办法 将dt.img反汇编成一个dtb文件 或将多个dtb文件合成一个有效的dtb文件? 谢谢
wowo
2015-05-28 18:57
@tuyer:这里有dtbtool的源码,你可以看一下,写一个代码去解它。或者去谷歌搜索一些,应该有人给出了解包的工具。
tuyer
2015-05-29 15:03
@wowo:@wowo
thanks wowo. http://download.csdn.net/detail/benjaminwan/8610887 可以下载这个工具.
xiaopohaibebo
2015-05-27 14:57
你好,我咋arc/arm目录下有发现比较设备树和段中的 compatible 代码,但是在arch/arm64的 setup。c文件里完全没有 做arm下的setup。c函数中的匹配。想请教哈 为啥arm和arm64的 匹配设备代码 部分是不同的,那arm64如何做板级匹配呢?
linuxer
2015-05-27 16:51
@xiaopohaibebo:你可否更细致的描述你的问题?例如可以贴上一些代码来进行具体说明,我不是很了解你想要问的问题
@ linuxer
2015-05-28 15:34
@linuxer:这是 arm64的
static void __init setup_machine_fdt(phys_addr_t dt_phys)
{
    if (!dt_phys || !early_init_dt_scan(phys_to_virt(dt_phys))) {
        early_print("\n"
            "Error: invalid device tree blob at physical address 0x%p (virtual address 0x%p)\n"
            "The dtb must be 8-byte aligned and passed in the first 512MB of memory\n"
            "\nPlease check your bootloader.\n",
            dt_phys, phys_to_virt(dt_phys));

        while (true)
            cpu_relax();
    }

    machine_name = of_flat_dt_get_machine_name();
    if (machine_name)
        pr_info("Machine: %s\n", machine_name);
}
下面是arm的
const struct machine_desc * __init setup_machine_fdt(unsigned int dt_phys)
{
    struct boot_param_header *devtree;
    const struct machine_desc *mdesc, *mdesc_best = NULL;
    unsigned int score, mdesc_score = ~1;
    unsigned long dt_root;
    const char *model;

#ifdef CONFIG_ARCH_MULTIPLATFORM
    DT_MACHINE_START(GENERIC_DT, "Generic DT based system")
    MACHINE_END

    mdesc_best = &__mach_desc_GENERIC_DT;
#endif

    if (!dt_phys)
        return NULL;

    devtree = phys_to_virt(dt_phys);

    /* check device tree validity */
    if (be32_to_cpu(devtree->magic) != OF_DT_HEADER)
        return NULL;

    /* Search the mdescs for the 'best' compatible value match */
    initial_boot_params = devtree;
    dt_root = of_get_flat_dt_root();
    for_each_machine_desc(mdesc) {
        score = of_flat_dt_match(dt_root, mdesc->dt_compat);
        if (score > 0 && score < mdesc_score) {
            mdesc_best = mdesc;
            mdesc_score = score;
        }
    }
   ............
}
setup_machine_fdt函数完全不一样啊
~零~
2015-05-14 22:48
博主,dst与dtsi之间有着包含关系,想请问下kernel是怎么确定第一个dst文件的名字的呢。
linuxer
2015-05-14 23:12
@~零~:dts文件描述了target board的硬件拓扑,是程序员自己需要创建的,只不过,很多target board的硬件资源是相同的(例如使用同样的ARM SOC),因此可以抽象出来dtsi文件,可以让不同的target board的dts文件可以include dtsi,从而减少重复定义。

kernel不需要确定dts文件,bootloader会把编译好的dtb文件传递给kernel的
~零~
2015-05-14 23:16
@linuxer:假如说我想将原来的dts与dtsi重新命名并保留原来的文件,怎么样kernel使用到我新命名的文件呢
odriver
2015-05-12 11:50
楼主您好!感谢您的分享。请问dtb的反编译命令是什么?
wowo
2015-05-12 13:19
@odriver:DTS的编译和反编译命令都是dtc,通过-I和-O命令,可以在几种格式之间转换,如:
dtc -I [dts,dtb,fs] -O [dts,dtb,asm] input_file
对反编译来说,就是
dtc -I dtb -O dts xxx.dtb
具体可参考dtc -h
odriver
2015-05-12 13:54
@wowo:谢谢前辈,这里简直就是linux内核驱动的学习圣地呀!
wowo
2015-05-12 15:46
@odriver:不用客气,欢迎常来。
tastier
2015-08-12 10:20
@wowo:wowo大神,请问反编译出来的dts文件可以直接用来生成dtb文件吗?
wowo
2015-08-12 11:31
@tastier:可以,命令反过来就可以了。
tastier
2015-08-12 14:53
@wowo:一些参考标签在反编译的DTS文件中显示为数字,这个没有影响吗?
蒸汽机车
2015-05-05 15:07
我用的是高通平台。

我刚看第一遍,有点困惑,dtb是bootloader阶段准备,那dtb的来源会是哪里,bootloader并没有找到描述文件,只有kernel源码里有。

又看了一遍,结合源码看,bootloader阶段去加载分区boot(kernel + ramdisk + device tree),ramdisk后面就是device tree,在这里得到dtb;

dtb的应该是在编译boot镜像时候生成的吧,写到flash去;bootloader阶段读取flash再把dtb传给kernel。可以这样理解吗?
linuxer
2015-05-05 23:37
@蒸汽机车:你的问题可以在Device Tree(二):基本概念中的前言得到答案。
蒸汽机车
2015-05-06 09:28
@linuxer:嗯,看了(二),过程和理解一样,我表述不太好。
没有引入设备树是这样准备硬件资源的在arch/arm/mach-xxx下准备 platform_device, i2c_board_info。
引入Device Tree不是也是类似在arch/arm/boot/dts/下准备硬件资源,只是换了一种写法。这样linus不是也得维护这些代码。
谢谢~~
linuxer
2015-05-07 00:13
@蒸汽机车:arch/arm/boot/dts/目录中的文件不是kernel image的中一部分,而没有引入设备树之前,硬件资源是以静态表格的形式hard code在kernel中,是kernel image的一部分。

在引入Device Tree之后,linus维护是固定不变的device tree代码,而不是arch/arm/boot/dts/目录中的文件,那些是传递给kernel的参数而已。
蒸汽机车
2015-05-07 10:14
@linuxer:boot.img包括kernel,ramdisk,device tree三部分,device tree不在kernel image内,和楼主说的一样。以下的代码可以印证。
int boot_linux_from_mmc(void)
{
    index = partition_get_index("boot");
    ptn = partition_get_offset(index);                            
    imagesize_actual = (page_size + kernel_actual + ramdisk_actual + dt_actual);                                                        
    mmc_read(ptn, (void *)image_addr, imagesize_actual);                                    
    boot_linux(....);
    return 0;
}
谢谢楼主。
蒸汽机车
2015-05-07 10:18
@linuxer:之前把boot和kernel镜像两个混淆了,以为是一样的
zlf
2015-05-04 21:16
绝对好文章,多谢楼主分享知识的精神真是大赞!

心情急切等待 Device Tree (四)GPIO controller的处理
zlf
2015-05-04 21:35
@zlf:找到了在这里!
http://www.wowotech.net/gpio_subsystem/io-port-control.html
printk
2015-05-04 16:32
问一个简单的问题。。。。。。。trampoline code是什么意思 。。。。。
困扰了我很久了。。根本翻译不出来阿。难道是蹦床代码吗,,求指教,这个单词是在看device tree的 文档时碰见的  原句是 :
If your platform uses a real implementation of Open Firmware or an implementation compatible with the Open Firmware client interface, those properties will be created by the trampoline code in the kernel's prom_init() file.
wowo
2015-05-04 16:54
@printk:从维基上帮您抄回来,不翻译了:
Trampolines (sometimes referred to as indirect jump vectors) are memory locations holding addresses pointing to interrupt service routines, I/O routines, etc. Execution jumps into the trampoline and then immediately jumps out, or bounces, hence the term trampoline.

http://en.wikipedia.org/wiki/Trampoline_(computing)
callme_friend
2015-03-20 19:20
接触linux快两年,却还是在入门中,看到博主接触5年就有如此深度,真心佩服!
设备树三篇博文看完,再结合我板子上内核的打印信息,总算能理解大概了,非常感谢博文。
请问博主:Device tree(二)中的基本概念的内容,是哪里找到的?
linuxer
2015-03-21 23:24
@callme_friend:我估计你搞错了,我不是wowo同学,那位帅哥接触linux有5、6年了,我大概有15年了,不过这和接触linux有多久没有关系,device tree是一个比较新的内容。其实很多文档我自己重新阅读都觉得很不理想,这三篇device tree的文档很粗糙,需要打磨,不过没太有时间去这么做。
学习linux的过程比较辛苦,尤其是前几年,熬过2~3年,整个世界都会不一样了......加油

所有的资料都是来自网络,不过我有看英文资料的习惯,当前阶段下,英文是掌握技术的利器,没有之一
callme_friend
2015-03-23 15:19
@linuxer:15年,真是很长很长的时间了。谢谢前辈鼓励,希望2-3年后会茅塞顿开,呵呵

前辈说的看英文资料,是有固定专门网站,还是零散google搜索后的文章?

再次感谢。
linuxer
2015-03-23 23:25
@callme_friend:其实google的资料并不多,我主要参考资料如下:
1、内核代码以及内核文档
2、Power_ePAPR_APPROVED_v1.1.pdf。我在文章中已经提及这份文档了。
callme_friend
2015-03-24 08:47
@linuxer:谢谢,我去看看文档!

发表评论:

Copyright @ 2013-2015 蜗窝科技 All rights reserved. Powered by emlog